EQUAL ORDER BLOCK METHODS FOR SOLVING SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS
نویسندگان
چکیده
منابع مشابه
Block Methods based on Newton Interpolations for Solving Special Second Order Ordinary Differential Equations Directly
This study focused mainly on the derivation of the 2 and 3-point block methods with constant coefficients for solving special second order ordinary differential equations directly based on Newton-Gregory backward interpolation formula. The performance of the new methods was compared with the conventional 1-point method using a standard set of test problems. Numerical results were presented to i...
متن کاملLecture 18: Ordinary Differential Equations: Second Order
2. General Remarks Second order ODEs are much harder to solve than first order ODEs. First of all, a second order linear ODE has two linearly independent solutions and a general solution is a linear combination of these two solutions. In addition, many popular second order ODEs have singular points. Except for a few cases, the solutions have no simple mathematical expression. However, there is ...
متن کامل3-Point Block Methods for Direct Integration of General Second-Order Ordinary Differential Equations
A Multistep collocation techniques is used in this paper to develop a 3-point explicit and implicit block methods, which are suitable for generating solutions of the general second-order ordinary differential equations of the form y′′ f x, y, y′ , y x0 a, y′ x0 b. The derivation of both explicit and implicit block schemes is given for the purpose of comparison of results. The Stability and Conv...
متن کاملModified Laplace Decomposition Method for Singular IVPs in the second-Order Ordinary Differential Equations
In this paper, we use modified Laplace decomposition method to solving initial value problems (IVP) of the second order ordinary differential equations. Theproposed method can be applied to linear and nonlinearproblems
متن کاملOrder Ordinary Differential Equations
The DI methods for directly solving a system ofa general higher order ODEs are discussed. The convergence of the constant stepsize and constant order formulation of the DI methods is proven first before the convergencefor the variable order and stepsize case.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Far East Journal of Applied Mathematics
سال: 2018
ISSN: 0972-0960
DOI: 10.17654/am099040309